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Introduction
0e000

Why Evaluating Quality of Models?

Phenomenon creep: several models exist

@ Purely empirical models: GL2000

@ Semi-empirical: MC10, ACI209

@ Mostly physically based: B3

o Rheological models: Bockhold, Heidolf

Which model to choose?

,,As simple as possible, but not simpler?”
Albert Einstein
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Introduction
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Example of Poor Quality isazan 2010

Collapse of Koror-Babeldaob Bridge in Palau

@ Strong underestimation of creep influence - inappropriate model

o Failure due to creep deformation and resulting loss of
pretensioning

CEB-72 prediction in design

Mean Deflections (m)

-1 T T T T
L " "I "I )
1, time from construction end, days

Bridge failure Prognosis of displacements
for different creep models
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System of Coupled Partial Models
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Coupling necessary? (Different Softwares, models, scales, ...)
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Partial Model and Coupling
[ 1]

Definition of Models

@ ... should describe events in the physical world, deflection of a
structure, social developments

. are an abstraction from reality; never describe everything
. are designed for specific purposes

. often include simplifications

. are related to specific phenomena — partial models
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Partial Model and Coupling
oe

From Reality to Global and Partial Models — |EisesitEm:

Project Global model

Partial model
Substructure

Partial model
Construction

—

Partial model
Soil

The global model GM is the representation of the conceptual model
(observed system, event). The underlying behavior of a phenomenon
can be investigated more detailed, comprehensible, and comparable

for a specific question. As a consequence, a global model of a

structure consists in general of several partial models PM;.
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Partial Model and Coupling
°

Ways for decomposition of a global model  ——

@ regarding multidisciplinary
e.g. for example multi-physics concerning electricity and
magnetism
@ a functional differentiation
e.g. substructure, superstructure, foundation, soil . ..
@ the spatial alignment of the models
e.g. columns, beams, frames, ...

@ the physical meaning of the components
e.g. material law, kinematic equations, ...
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Partial Model and Coupling
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Coupling - Unidirectional

Definition of partial models coupling

@ Coupling is the process of transferring the information from
one partial model PM; to another.

@ Unidirectional coupling: exchange of data is allowed only one
way; output of PM; depends independent from PM;

@ Unidirectional: cannot describe iterative and interactive events |

PM, positioning

| PM,
Geometry in IFC geom. representation Geometry in FEM
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Partial Model and Coupling
0®000

Bidirectional Coupling

@ Exchange of data is allowed both-way
@ Output of PM; and/or PM;; affect each other

@ Can be used to compute iterative and interactive facts,
iteration steps are necessary to reach equilibrium condition in
the coupling

section forces at

PM, foundation R PM,
Structure < Soil
displacements at soil
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Partial Model and Coupling
00®00

General Coupling Representation

@ unidirectional
@ bidirectional
© via an additional partial model

© via boundary conditions

2} < 2]
() <, Q
) Cn o
Q c )
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Partial Model and Coupling
000®0

Example: Coupling Column-Foundation

initial condition final condition

u'=0

I fixed support
71/ 1 u'=0
\?" u, 7787

% Net (Pc,1 =0
uZ Vc,1
MC,’\
unidirectional
coupling MET= e
“?_’ VARV
f1 _NeT
N_=N 1 u1% 0
simple u{:¢8
soil model e

3355355858 s
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Partial Model and Coupling
000®0

Example: Coupling Column-Foundation

initial condition final condition

o fixed support u'# 0
/ u,“'#0
\?" u, 777

% Net 0’20
u
: ve! Me!

bidirectional
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Vf,1 =Vt,1
- NfT =N&T
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Partial Model and Coupling
[elelelel ]

Challenges for Evaluation of Coupling

Important Questions

@ Do we already have adequate models for certain or all parts of
the physical event under consideration?

@ Does is make sense to decompose the event into several
conceptual models?

@ Is a coupling physically justified?
@ Do we have a certain overlap of the model domains?

@ What are the input and output parameters that have to be
coupled and how can we do so?
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Techniques

Bauhaus-Universitat Weimar

Techniques

Model
robustness

Model Model
sensitivity complexity

Model
uncertainty

A Model property Modelling technique

hadur Motra
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Modeling Techniques
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Inverse Modeling

What is Inverse modeling?

Parameters are determined from measurements of model components
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Modeling Techniques
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Inverse Modeling - Example

Measured stress—strain-relation

250 ' x e T
«
200 x
«
©” 150 "
e
@ «
°
“ 100 x
«
50
«
(] 05 1 15
strain SS X 10’3
Measurements

250

200

s

150

stress o,

100

50

Model to predict stress—strain

0 0.5

1
strain €
S

Model

What are the model parameters E, f,, and H for an optimal fit?
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Modeling Techniques
oeo

Inverse Modeling - Example

Stress-strain-relation

250 . . %
x
200 &
©” 150
123
@ x
2
® 100 x
50
—nNO0 O
meas
x Wwitho
meas
0 05 1 15 2
strain SS X 10’3

Optimal fit to the measurements
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Modeling Techniques
ocoe

Inverse Modeling

@ Existence

@ Uniqueness

@ Data dependency of parameters

@ Measurements are sparse, incomplete, with errors

v

Inverse modeling techniques

Calibration

@ System identification
@ Regularization techniques

@ Bayesian Updating
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Modeling Techniques
.

Stochastic Modeling

Stochastic modeling techniques

o Statistical description of input parameters

@ Stochastic Finite Elements

Application in civil engineering

@ Reliability analysis

@ Tool to quantify model quality

4

Examples of techniques to improve computational performance

@ Response Surface Methods

@ Latin Hypercube Sampling
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Modeling Techniques
®00

Multiscale Modeling

Simulates structures’ behavior over different spatial-temporal scales

i 10° 10° 10° 10° [m]
I
Nano scale: Micro scale: Meso scale: Macro scale:
unit cell, grid structure, grain structure, structure,
crystal lattice, crystallite, structure elements,
crystalline material,
defects: defects: defects: defects:
vacancies, atomic dislocations; grain boundaries; precipation, pores,
inclusions; cracks;

[Wudtke
2012]
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Modeling Techniques
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Concurrent Multiscale Modeling

Techniques to do it

@ Important subdomains are modeled extensively

@ The rest of the domain is just coarsely approximated

[Ghorashi2012]
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Modeling Techniques
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Hierarchical Multiscale Modeling

@ Idea: Different scales are modeled and the finer scaled parameter
results are translated to the upper scale

@ Reference Volume Element to gain a representative model
@ Homogenization methods to relate different scales

@ Application: integrated computational materials engineering;
knowledge at finer scale is used at coarser scale

Macro scale Meso scale
H
1
e B
P RVE
' B<<H
L S B<<L
A b<<B

Homogenisation
[Wudtke2012]
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Modeling Techniques
[1e}

Adaptive Modeling

For what it is used for?

To reduce and control numerical or model errors

How does it works?
By modifying...
@ Model
@ Mesh
@ Order of approximation
@ Time steps

@ Other numerical algorithm features

. depending on a specified error limit using error estimators

Hem Bahadur Motra Evaluation Methods for Quality Prediction of Coupled Partial Model 23 /75



Modeling Techniques
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Adaptive Modeling - Example

Adaptivity for geometric non-linear kinematics [Nikulla2012]
@ Error estimation of geometric linear models

@ Results of first load steps were used to estimate error for larger load
steps

@ In case of large error switch to non-linear model

120000 | Linear
Non-linear
100000 | Approximated, non-linear ===

24P

80000

Geometry and loading of truss 60000 ¢

40000
element

Internal energy [kNcm]

20000

0

0 20 40 60 80 100
Load step

Internal energy of system depending

on load step
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Model Properties
°

Model Properties

Main model properties

o Complexity
@ Uncertainty
o Reliability
o Sensitivity
@ Robustness
o Risk
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Model Properties
®00

What is Complexity?

= Twisted together, Embraced, Entwined, ... \

The definition implies that for a complex...

@ At least two parts are required.

@ The parts should be connected together in a way that it is
difficult to separate them.

There comes the difficulty!

A composite structure of distinct but connected parts where the
response of one part affects the response of the other parts
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Model Properties
o] 1o}

How to measure complexity?

Not a general measure yet...

Although many measures of complexity are available for different
scientific contexts, no measure is yet proposed that could be
applied to a wide range of systems.

There are still some hopes!

We consider a system as more complex than the other if...

@ more components can be distinguished
or

@ more connections exist between the components
or

@ the components/connections are more complex
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Model Properties
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Example: Rheological Creep Models

Ecs
Gec Gc
Kelvin element - low Poynting-Thompson element

complexity - medium complexity

Ewc,vre\ cv-el [v cv-pl (, cv-pl
Oc
S, .
E.

Tﬂ,v.e[ n cveel T] c-pl n" cv-pl

Lgc,e\ + €cda L Ecveel L Ecv-pl L

1 1 1 7

Rheological creep model according to Heidolf - high complexity

Hem Bahadur Motra Evaluation Methods for Quality Prediction of Coupled Partial Model 28 / 75



Model Properties
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What is Uncertainty?

@ Lack of complete certainty, when more than one possibility
exists
i.e. the true outcome/state is not known

@ We use the term to describe our incomplete knowledge

v

Where does it stem from?

Wherever our knowledge is incomplete!
@ Science underlying a model

Model parameters

Input data

Measured data (Observation error)

Code uncertainty

Hem Bahadur Motra Evaluation Methods for Quality Prediction of Coupled Partial Model
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Model Properties
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Sources of Uncertainty: A Categorization

Model Framework Uncertainty
Uncertainty in the underlying science and algorithms
@ Lack of knowledge about the behavior

o Simplifications

Model Niche Uncertainty
Misapplication of the model

@ Application of the model outside the expected system

@ Combining models with different spatial /temporal scales

Hem Bahadur Motra Evaluation Methods for Quality Prediction of Coupled Partial Model 30/ 75



Model Properties
00®00

Sources of Uncertainty: A Categorization

Model Input Uncertainty

Resulting from:

@ Data measurement errors
@ Inconsistencies between measured and input data
@ Parameter value uncertainty

They have different sources, i.e. either they arise from:
@ Measurement errors
@ Analytical imprecision
@ Limited sample size

or

@ Stochasticity / inherent randomness
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Model Properties
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Uncertainty of model response

Parameter- and model uncertainty

A Jotal Uncertainty

Parameter-
uncertainty uncertainty

-

Model complexity

Uncertainty depending on model complexity

V.
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Model Properties
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Uncertainty: Final Remarks

How to deal with uncertainty?

For a model response Y

o Coefficient of variation CVy
@ Standard deviation oy

are used to quantify the uncertainty of the prediction

Model uncertainty allows for a deterministic interpretation as
model error. But...

Parameter uncertainty can only be defined in the framework of
stochastic analysis.
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Model Properties
[ 1}

Reliability

@ Reliability denotes the probability that a response of structure
does not exceed a certain failure limit within its " life-time"
taking into account all uncertainties that influence the
structural behavior )

Reliability ...

@ ...is a probability - failure is regarded as a random
phenomenon

@ ...is predicated on "intended purpose”’, e.g. operation without
failure

@ ...applies to a specified period of time

@ ...is restricted to operation under stated conditions
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Model Properties
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Reliability Z = P(S < R)

f, @ | ‘“‘( @W _)

S

<— Randverteilung
f S (s) g

[Bucher 2009]

[Schneider 1994]
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Model Properties
°

Sensitivity - Definitions [Saltelii et al. 2008]

@ Investigate influence of input parameters on model output

@ Stochastic sense: Study of how the variation in the output can
be apportioned to different sources of variation in the input

v

Outcome and Benefit

o Parameter fixing (PF): parameters with low sensitivity can
be considered as deterministic - reduction of complexity

o Parameter prioritization (PP): key model parameters are
identified - become target of further investigations

o Parameter mapping (PM): it is found out which parameter
variation leads to an excess of a certain limit

o Help for the understanding of the model

A\
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Model Properties
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Robustness in Structural Engineering

Structural Robustness Model Robustness

A structure shall be designed and @ Ability of a model to give
executed in such a way that it plausible answers in a wide
will not be damaged by events range of input parameters
such as explosion, impact and the @ Small variations in the
consequences of human errors, to model response by

an extent disproportionate to the stochastic input parameters
original cause. ”
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Model Properties
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Model Robustness

For example: Taguchi Robustness
T = 10 - |0g10 (0_;2)

with: oy - standard deviation of model response
> >
b 4
5 Model 2 H Model 2
& &
L S not robust
3 3
: 2
not robu:
> o Model 1
robust
robust
Model Input X Model Input X
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Model Properties
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Risk in Structural Engineering

Most of the structural engineers think...

... that a structure is free of risk, if the design of all the structural
members is done. But that is not right.

o

. is the effect of uncertainty on objectives.

risk = consequences x probability

R(x) = C(x) x P(x)

\

@ Consequences are often described by costs

@ Decreasing risk leads to increasing construction costs
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Model Properties
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Example for Risk

. is the effect of uncertainty on objectives.

risk = consequences X probability

... that an earthquake occurs.

This is only a probability.

... that an earthquake occurs and you stay in a building which
cannot resist the load and fails.

Then you have the probability of the earthquake and the
consequences of the failure.
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Stochastic Modeling
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Stochastic Modeling —

Modeling technique: stochastic modeling
Criterion: model uncertainty

Model
robustness

Model Model

sensitivity complexity

Stochastic
Modelling

uncertainty

T — T —
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Stochastic Modeling
o000

Stochastic Modeling: Why?  ——

The world is random, not deterministic

o Material parameters, loading, environmental parameters, and
geometrical properties are uncertain input

@ My model is not reality — it's uncertain |

PDF of fy
0.018 :

0.016f 1
0.014f 1
0.012} 1

2 0.01f 1

o

5 0.008t 1
0.006f 1
0.004} 1

0.0021 R

](.>SO 200 250 300 350
fy
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Stochastic Modeling
coeo

Stochastic Modeling: Why?  ——

How does the randomness of input effect my output?

@ Uncertain input leads to an uncertain output

@ The degree of uncertainty of the prediction steers directly the
belief in the model and the results

v

@ Quantify the uncertainty of the model prediction

o Consider uncertainty in the evaluation of the design of
structures

\
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Stochastic Modeling
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Stochastic Modeling: How?  ——

Analytical solution

o Exist for well defined models or equations

@ Are not applicable to numerical models, complex models etc.

Monte Carlo simulation

o Numerical approximation of probability space

o MC simulations are possible for all deterministic models

PDF of fy Distributior of function f(fy)
0.01 05
0.016]
0014 a4
0.012]
03
2 001 .
5 5
5 0.008 =
s 0.2
0.006| |
0.004] 01
0.002
950 200 250 300 350 ] 20 40 60 80
fy f(fy)
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Stochastic Modeling
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Monte Carlo I

(Mainidea

o Approximate continuous probability density function (PDF)
with discrete samples from the PDF
Continuous: E [f (x)] = [°_f (x) p(f (x))

oo

MC: E[f (x)] = 4 SN, F (%)

MC: 62 [ (] = & S (F 09— El7 (1)

N is the number of total samples

f (x) is a function depending on input x
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Stochastic Modeling
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Monte Carlo I

o Generate N random numbers (samples) between 0 and 1

@ Numbers are equivalent to values of cumulative distribution
function (CDF)

o Calculate parameter sample x’ using the inverse CDF

PDF of fy CDF of fy
0.018 ‘ 1 ‘
0.016
0.014 0.8
2
0.012 5
S 06}
2 001 8
o c
S 0.008 2
= 304
0.006 =
2
0.004 02
0.002
P50 200 250 300 350 %50 200 250 300 350
fy
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Monte Carlo

Stochastic Modeling
0®000000

sample | CDF’ | fy'
1 0.41 | 2344
Sample fy from distribution A/ (240, 24) 2 0.63 | 247.8
3 0.19 | 219.3
PDF of fy CDF of fy
0.018 : 1 ‘
0.016
0.014 0.8}
2 .
0.012 5 sample i=2
2 001 30-6: 777777777777777777 ‘
%0.008 S sample i=1 i
S04f-- - !
0.006 5 .
0.004 © 02 sample i=3 3 3
0.002
P50 200 250 300 350 50 200 250 300 350
fy fy
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Stochastic Modeling
00®00000

Parameter Results I

A

sample | CDF' | A/ | E[f] | 6[f] | 62[H]
1 0.41 | 234.4
2 0.63 | 247.8
3 0.19 | 219.3 | 240.2 | 24.8 | 161.6

100 0.94 | 278.2

Hem Bahadur Motra Evaluation Methods for Quality Prediction of Coupled Partial Model 47 / 75



Stochastic Modeling
000®0000

Next Steps Bauhaus-Universitit Weimar

Generate N samples for all stochastic input parameters
If necessary, consider correlation
Run model N-times for all parameter combinations

Evaluate samples of model output

Sufficient number of samples required to calculate reliable
stochastic properties - might be computational expensive
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Stochastic Modeling

0000e000

Model Results —

@ Model Y is calculated for 10 samples
(usually too low!!!)

@ Response values for e = 0.0013:

Sam pIe fy’ E' Y! Histogram for 1000 samples; £=0.0013
1 220 | 207600 | 220 20 ‘ ‘ ‘
2 222 | 252070 | 222
3 240 | 228160 | 239
4 287 | 201210 | 241 .
5 194 | 211400 | 194 E
6 231 | 193520 | 231 )
7 253 | 187360 | 225
8 258 | 177400 | 213
9 266 | 217430 | 266 0 - o - 0
10 242 | 223010 | 242 stress o [MN/m?]
@ Results: £ [Y] = 235, 6y par = 21,
and 8% ,,, = 439
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Stochastic Modeling
00000e00

Model Results —

o Evaluate scatter of response

@ Measures: standard deviation oy or coefficient of variation
CV =

E[Y]
stress—strain—relation for 10 samples parameter uncertainty o, .
300 T T T 25 T
250 €
7 H 20r
< 200 7 &
s o 15f
2 150 s
o =1
8
g 3 10
» 100 g
I
g
50 .g
o ‘ ‘ ‘ 0 ‘ ‘ ‘
0 0.5 1 1.5 2 0 0.5 1 1.5 2
strain € [-] x 1072 strain € %1072
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Stochastic Modeling
00000e00

Model Results —

o Evaluate scatter of response

@ Measures: standard deviation oy or coefficient of variation
CV =

E[Y]
stress—strain—relation for 10 samples parameter uncertainty CV,
300 T T T 0.12 T
250 - 0.1
Z. Hg
<Z 200 7 > 0.08
2 2
=3 S
= 150 2 0.06
g z
» 100 O 0.04r
e
|53
3
50 0.02r
o ‘ ‘ ‘ 0 ‘ ‘ ‘
0 0.5 1 1.5 2 0 0.5 1 1.5 2
strain € [-] x 1072 strain € %1072
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Stochastic Modeling

00000080

Adding Model Uncertainty I

Model Uncertainty

o Represents general error/misprediction of model
@ Expressed by standard deviation o moq Of CViod
@ Increases total uncertainty of prediction
°

Parameter and model uncertainty are combined by summation

of the variances or CV's

2 _ 2 2 2 _ 2 2
UY,tot — UY,par + UY,mod and CVY,tot — CVY,par + CVY,mod

Total uncertainty can be used to evaluate models
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Stochastic Modeling
0000000e

Model Quality E—

Model Quality

@ Model quality of model j can be directly related to the CV of
the prediction

. __ min CVy
MQ; = e, "

@ Low uncertainty — good quality

@ High uncertainty — poor quality

4

In general...

@ More complex models have more uncertain (hard to identify)
parameters — higher parameter uncertainty

@ More complex models capture real behavior better — less
model uncertainty

@ Evaluation find the best compromise
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Application to Concrete Creep Models

Stochastic Modeling
©0000

@ Concrete creep models describe time-dependent increase in
compliance/deformation suspected to sustained loading

@ Many different approaches available
o Creep phenomenon not totally understood — high uncertainty

in prediction

Characteristic time-dependent strains of concrete

Evaluation Methods for Quality Prediction of Coupled Partial Model

Hem Bahadur Motra

Total strain ¢,

A Primary
creep

d’
d:z” <0

-

Creep strain g,

Elastic strain ¢,
>

>
Load duration t
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Stochastic Modeling
0000

Parameter Uncertainty I

@ Assignment of stochastic distribution of inputs considering
correlation, e.g. Young's modulus and concrete strength

@ Monte Carlo analysis using Latin Hypercube Sampling

@ Resulting parameter uncertainty can be time-dependent

0.20 T T : :
[—MC10 —ACI209 —B3 — GL2000]
0.161 =
T 0.a2F 1
S
g
3 oosl ‘ [ 1
T~
0.00 : : : : 1 _ -
05 pyes pye ppe o Time-dependent pa

Load duration (t-1;) [d] rameter uncertainty
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Stochastic Modeling
00e00

Creep Model Uncertainty I

@ Estimation of uncertainty CVz ., from comparison of model
prediction to many different measurements

@ Decomposition of uncertainty [Madsen & BaZant 1983]

CV%C, = Cvnzvod,cr + CV52 + CV§

with:  uncertainty of creep model CVimod,cr
measurement uncertainty CV. =~ 0,05
uncertainty of creep phanomenon CV, ~ 0,08

@ Creep model uncertainty

Cvmod,cr = \/CV%C,, - CVE2 — CVO%
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Stochastic Modeling
000®0

Model Uncertainty in MC Simulations T

Definition of model uncertainty factor W o4

@ Normal distribution of W4 -, mean value Wmodﬂ =1
@ CVz . of models based on RILEM databank [Bazant & Li 2008]

model CVZ,cr CVmod,cr
MC10 0,31 0,29
ACI209 0,39 0,37
B3 0,28 0,27
GL2000 0,28 0,27

@ Model uncertainty constant in time  [Gardner 2004]
@ Multiplication with calculated creep compliance

Cmod,cr (t) = wmod,cr Cc (t)

Hem Bahadur Motra Evaluation Methods for Quality Prediction of Coupled Partial Model 56 / 75



Stochastic Modeling
ooooe

Model Quality  ——

@ Total uncertainty

Cvtot,cr(t \/C par,cr t) + C mod cr

@ Time-dependent quality of model j

min ( CVtot,cr (t))

M cr.j -
Q J (t) CVtot,cr,j (t)

@ Total model quality

N
M er (i) & +M er (i1, T
MQe=c) ) > Qer (ti11, o) [log (tis1—to)—log (ti—to)]

i=1
with: ¢ normalization constant
to, tj and tiy; time at loading, begin/end of time increment
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Stochastic Modeling

Example: Concrete C30/37

C30/37, tp =28d, t; =7d, V/S =0,05m
stochastic input parameters

parameter E Ccv distribution
RH 65 % 0.04 normal
feos 38 MN/m? 0.06 log-normal
Eco 28 31900 MN /m? 0.10 log-normal
Ecm.28 27150 MN /m? 0.15 log-normal
c 362 kg/m?3 0.10 normal
wW-C 0.47 0.10 normal
a-c 5.16 0.10 normal
f-a 0.5 0.10 normal
sl 38cm 0.10 normal
a 0.015 0.20 normal
ks 1.15 0.05 normal
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Stochastic Modeling

Example: Concrete C30/37

Results of stochastic analysis

o Different mean creep compliance C.(t)
@ Large differences of the uncertainty of the prediction

@ Low time-dependency of uncertainty

x107*

1.2 T T T T 0.45 T : : T
[—MC10 —ACI209 —B3 — GL2000] [—MC10 —ACI209 —B3 — GL2000

z

< 0.40
o~

E

o

© T 035}

g 5

] g

g 5 o030

Q

o

o

i

o 0.25f

O

0.0 : : : : 0.20 : : : :
10° 10" ? ? 10* 10° 10" 3 10° 10*
Load duration (t-t, ) [d] Load duration (t—_to) [d]
Mean creep comfiance Total uncertainty
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Stochastic Modeling

Example: Concrete C30/37

Model quality
@ Models B3 and GL2000 have highest quality
@ ACI209 has quality of 0.7 — high loss of quality

1.0
— 0.81
i
5
g 0.6 —MC10
> —ACI209
5 —B3
B 04 : GL2000
o]
©
o
Z o2
00 ; ; ;
100 101 2 3

_Load dluc;ation (t—to)o[d] L
Model quality of creep prediction
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Global Mod
0

Evaluation of Coupled Partial Models

Partial model
Substructure

Partial model :
Load
Model complexity +
Model robustness Partial model | Material

Model sensitivity Construction +

Model uncertainty Environmental

conditions
+

Partial model
Soil
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Global Mod
oce

Evaluation of Coupled Partial Models —

Evaluation of individual partial models is done - what's next?
@ How to combine the individual qualities?
@ When combining PMs, are there interaction effects present?

@ What is the influence of coupling types on the prediction of
the global model?
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Global Mod
®000

Evaluation Method for Coupled PM'’s T

Evaluation based on graph theory
Consideration of individual qualities of PMs

Consideration of influence of PM on global model response

2-step procedure

@ Identify influence of class of PM
Q |Identify influence of quality (model choice) on output

Based on sensitivity studies

Assumption so far: perfect coupling
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Global Mod
0®00

Variance-Based Global Sensitivity Analysis  ——

Sensitivity indices to quantify influence

o First order index S;: exclusive influence of parameter X;
[Sobol 1993]
o VEMX) | E(V(YIX)
: V(Y) V(Y)
o Total effects index St;: influence of parameter X; including
interactions with all other parameter X.; [Homma et al. 1996]

V(E(Y[X.)) _ E(V(Y[XMi)

TV v

o Difference St; — S; is measure for interactions of input
parameters
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Global Mod
fe7e] Yo

Influence of Partial Model I

Method Step @

@ Each PM i is represented by an discrete random variable
Xi, i=1,2,3

o 0 PM non activated
" ]1 PM activated

@ Sampling uncorrelated, uniformly distributed parameters X;

o Sensitivity analysis by Saltelli

@ Determine the influence of PM by sensitivity indices S; and
Sti

o Difference between S; (First Order Effects) and S7; (Total
Effects) indicates the effect of coupled partial model
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Global Mod
ocooe

Influence of Partial Model Quality T

Method Step @

@ Random variable control the model selection in each PM

1 P-A

X eomNL —
€ 2 Geom. nonlinear

@ Sensitivity index St; ps represent the influence of the model
selection =High Index = quality of the PM is important
S%,Ms x MQpy

o Model quality: MQgpn = 55
Ti,Ms
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Global Mod

Global Quality of Bridge Model

~ load model -
ﬁt affic loading
geom. non- b \
linearity 8

A

B concrete -

100 200 300 400 500 600 700 800
Zeit in [d]
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Global Mod

Structure - Target Values

I

N 4
~ 4
~ o’
\\ ’/
- 5m
~~——" l

@ acceleration 8,8m

@ DAF - deformation
é % % %‘ @ bending moment

® deformation
k——36,95m I 41m k— 32,35 m—)
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Global Mod

Target Value: @ Acceleration

Quality structural model:

&7 a
o l creep
loadmodel
ACI209 0,68
A 0,72
Sensitivity of class of MC10 0.76
partial model: :
INPUT B 0,72
S S B3 1,00
geom. NL 0,00 0,00 €100 GL2000 0,92
creep 0,02 0,03 Sensitivity :
shrinkage 0,00 0,00 0,96 0,07
| 000 000 model selec-
sol ! ! tion STi,Ms

dyn. load 0,97 0,98
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Global Mod

Target Value: @ Acceleration

Quality structural model:

Sl l ° creep
@

loadmodel

ACI209 0,68

A 0,72

Sensitivity of class of /> MC10 0,76

partial model: INPUT
B3 1,00
Si Sti
geom. NL 0,00 0,00 GL2000 0,92
creep 0,02 0,03 Sensitivity
shrinkage 0,00 0,00 model selec- 0,96 0,07
soil 0,00 0,00 tion S7: e

dyn. load 0,97 0,98

MQem=0,72
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Global Mod

Target Value: @ DAF - Deformation

Quality structural model:

é~~ L,’, l JAN
SAF creep
@ loadmodel
ACI209 0,68
o A 0,91
Sensitivity of class of MC10 0.76
partial model: '
INPUT B 1,00
S S B3 1,00
C0,84
geom. NL 882 882 GL2000 0,92
creep ' ' Sensitivity
shrinkage 0,00 0,00 0,91 0,14
! model selec-
soil 0,00 0,00 R
tion S ws

dyn. load 0,94 0,97
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Global Mod

Target Value: @ DAF - Deformation

Quality structural model:

AN L P4 AN
Ssk- l creep
@ DAF loadmodel

ACI209 0,68

A 0,91

Sensitivity of class of /> MC10 0,76

partial model: INPUT
B3 1,00
Si Sti
geom. NL 0,00 0,00 GL2000 0,92
creep 0,03 0,06 Sensitivity
shrinkage 0,00 0,00 model selec. 0'91 0.14
soil 0,00 0,00 tion Sti e

dyn. load 0,94 0,97

MQer=0,96
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Global Mod

Target value: @ Field Deformation

Quality structural model:

&S P a
A U_L, l creep
loadmodel
ACI209 0,68
o A 0,91
Sensitivity of class of MC10 0.76
partial model: '
INPUT B 1,00
S S B3 1,00
co0,84
geom. NL 882 ggg GL2000 0,92
creep ' ' Sensitivity
shrinkage 0,01 0,01 model selec- 0,00 1,00
soil 0,01 0,01 .
tion S ws

dyn. load 0,00 0,00
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Global Mod

Target value: @ Field Deformation

Quality structural model:

é~~ L,” l a
- creep
®u loadmodel
ACI209 0,68
A 0,91
Sensitivity of class of /> MC10 0,76
partial model: INPUT
B3 1,00
Si Sti
geom. NL 0,00 0,00 GL2000 0,92
creep 0,98 0,98 Sensitivity
shrinkage 0,01 0,01 model selec- 0.00 1,00
soil 0,01 0,01 tion STi Ms

dyn. load 0,00 0,00

MQen=0,68
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Global Mod

Target Value: @ Bending Moment

Sensitivity of class of
partial model:

Si Sti 8 l 2
geom. NL 0,89 0,94
creep 0,04 0,08 @ bending moment
shrinkage 0,00 0,00
soil 0,00 0,01

dyn. load 0,02 0,02
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Global Mod

Target Value: @ Bending Moment

Quality structural model:

geometrical creep soil MQ:m

nonlinear

. MC10 0,78

ACI209 0,69

P-A 0,95 linear 0,4

INPUT %
‘ B3 1,00 oly
A‘ linear
GL2000 0,93 1,00
Sensitivity Sti s
for yield strength 0,07 0,93 0,00 0,71
600 kN /m?
Sensitivity St vs
for yield strength 0,02 0,05 0,95 0,43

500 kN /m?
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Global Mod

Summary of the method I

@ Model quality of global model is determined

@ Coupling effects are detected and quantified

@ Best model combination gets quality MQgn=1.0; Difference
to 1 is loss of quality

o Evaluation is performed for single response quantities, no
generalization possible

@ Results depend on load level
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Conclusions

@ Many different possibilities are available to quantify prediction
quality of PM

@ Which method to use depends on characteristics of PM
@ Stochastic evaluation is promising and flexible

o Challenging task is to determine model error/uncertainty
without using specific measurements

@ Ofter time-consuming evaluation process

@ Quantifying influence of PM on global model helps to
understand behavior and save evaluation time

@ Generalization of results ofter difficult
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